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Chiral π-conjugated systems with helically annelated aromatic
rings possess extraordinary chiral properties.1 Although significant
advances in the synthesis of helical and doubly helical molecules
have been made in recent years,1-3 typical syntheses of such highly
annelated molecules are tedious and produce relatively low yields.
Novel efficient synthetic approaches to adequately functionalized,
strongly chiral molecules are critical in enabling emerging applica-
tions for chiralπ-conjugated materials.4,5

Herein we describe an efficient synthesis of a chiralπ-conjugated
dihydrazine1, in which the two [5]helicene-like fragments are
annelated in their mid-sections to give a conjoined double helicene
structure (Figure 1).

The synthesis of1 was discovered during screening for the
optimum routes to the dinitroxide, derived from diamine2 (Scheme
1).6 The remarkable aspect of this synthesis is that the chiral

structure1 is obtained in high yield in a single, atom-efficient
synthetic step from planarized diamine2 via three oxidative
homocouplings (one CC and two NN), and two annelating
cyclizations, using a single reagent, such as benzoyl peroxide,
(PhCO2)2.7 Diamine 2 is prepared by annelation of3 using
electrophilic aromatic substitution.8 3 is obtained from 4,6-
diisopropenyl-1,3-dibromobenzene9 and 4-tert-butylaniline, using
Pd-catalyzed CN bond cross-coupling.10

The 1H and13C NMR data for1 in solution are consistent with
a conjoined double helicene structure, in which [5]helicene-like
fragments are either homochiral or heterochiral (meso); that is,1

may possess either aD2 (as in Figure 1) orC2h point group. In
particular, diastereotopic splitting (∆ν ≈ 100 Hz) for the methyl
groups of the dihydropyridine rings is observed, with no line broad-
ening up to at least 70°C. However, upon addition of chiral shift
reagent, ytterbium[tris(3-heptafluoropropylhydroxymethylene)-(+)-
camphorate], the1H NMR (400 MHz, benzene-d6) spectrum shows
additional diastereomeric splittings, in particular, the methyl groups
of the t-Bu groups appear as two well-resolved 1:1 singlets (e.g.,
∆δ ≈ 0.01 ppm). This precludes the achiralC2h point group and
indicates that theD2-symmetric double helical structure of1 is
configurationally stable on the1H NMR time scale, providing the
lower limit of 16 kcal mol-1 for the barrier for racemization in1.
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Figure 1. Dihydrazine1. Each of the two homochiral [5]helicene-like
fragments is shown in stick-and-ball.

Scheme 1 a

a (i) 4-tert-Butylaniline (2.2 equiv),t-BuONa (∼3 equiv), Pd(OAc)2 (0.01
equiv), t-Bu3P (0.03 equiv), toluene, under N2, 90 °C for 12 h; (ii) H3PO4,
85 wt % in water, under N2, 90 °C for 3-4 h; (iii) (PhCO2)2 (1.75-2.1
equiv), CH2Cl2, under air, 0°C for 3 h.

Figure 2. Molecular structure and conformation for dihydrazine1 and
diamine2: (A) top view of 1; (B) side view of1; (C) top view of2; and
(D) side view of2. Carbon and nitrogen atoms are depicted with thermal
ellipsoids set at the 50% probability level. Only one of the two unique
molecules of1, in which hydrogen atoms are omitted for clarity, is shown.
For 2, disorder is omitted for clarity.
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Structures of dihydrazine1 and diamine2 are confirmed by
single-crystal X-ray analysis (Figure 2).

In diamine2, the annelated structure of five six-membered rings
is approximately planar.11a Dihydrazine1, which may be viewed
as a dimer of2, possesses an approximateD2 point group. In the
structure of1, each monomeric diamine moiety derived from2
adopts a chairlike conformation, with the dihedral angles of 40.96-
(3) and 43.90(3)° and dihedral angles of 40.85(3) and 43.64(3)°
for the two independent molecules A and B, respectively. The two
“chairs” are oriented antiparallel to each other, with their fused
seats forming the approximately planar central part of the molecule,
consisting of four six-membered rings.11b Therefore, the overall
structure of1 is conjoined helical, with two homochiral [5]helicene-
like fragments annelated in their mid-sections (Figures 1 and 2).12,13

Furthermore, the “four-armed” molecular shape of1 results in
inefficient crystal packing. It is conceivable that a single enantiomer
may not crystallize but rather form an isotropic glassy material.5b

Because of the possible cooperativity in double chair-to-chair
flips and inversion of configuration for both [5]helicene-like
fragments, the barrier for the racemization of1 is likely to be much
higher than the lower limit estimate by1H NMR spectroscopy.
Analogous cooperativity may be demonstrated for the double chair-
to-boat flips, corresponding to the isomerization of theD2-
symmetric 1 to its C2h-symmetric diastereomer (1-C2h). Such
isomerization occurs readily in acetic acid at moderate temperatures
(Scheme 2), indicating that1-C2h is the thermodynamic product.
However, in the absence of acid,1 isomerizes to1-C2h with a half-
life of ∼3 h at 180°C in naphthalene solution. This corresponds
to a free energy barrier of∼35 kcal mol-1 for the inversion of one
of the [5]helicene-like fragments in theD2-symmetric structure1.
This relatively high barrier, compared to the barrier of 24.1 kcal
mol-1 in [5]helicene,14 may be indicative of cooperativity in the
conversion from two chairs inD2 to two boats in theC2h point
group.15

Dihydrazine1 is reduced to achiral tetraamine4 (Scheme 2).
Oxidation of4 with (PhCO2)2 gives exclusively dihydrazine1; upon
partial oxidation of 4, only 1 and unreacted4 are detected.
Interestingly, 4 is obtained in good isolated yield via partial
oxidation of diamine2. These results suggest that4, that is, CC-
monocoupling product of2, is an intermediate in the oxidation
pathway from2 to 1.16

UV/vis absorption spectra inn-heptane showed the expected red
shift from λmax ) 275 nm (sh 333 nm) for diamine2 to λmax ) 409
nm (sh 439 nm) for dihydrazine1.17 A blue fluorescence is found
for 1 in n-heptane, with quantum efficiency,ΦF ≈ 15%, atλmax

em

) 472 nm (excitation in theλexc ) 289 and 409 nm).17

In summary, the synthesis of1 provides a novel, highly efficient
approach to a chiralπ-conjugated conjoined double helicene with
remarkable configurational stability. Considering the molecular
shape, the hydrazine moieties of1, and the possible analogues of
1, organic materials that are strongly chiral, electroactive, and

isotropic may be envisioned. Resolution and syntheses of analogues
of 1 with extended conjoined helical structures are being pursued.18
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Scheme 2 a

a (i) AcOH, 110 °C, 1 h, 66-73%; (ii) H2NNH2, AcOH, 110°C, 10
min, quant.; (iii) (PhCO2)2 (2.0 equiv), CH2Cl2, under air, 0°C, ∼4 h,
∼75%; (iv) (PhCO2)2 (0.75 equiv), CH2Cl2, under air, 0°C, 3 h, 59-70%.
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